Analyse

Exam

22nd of January of 2007

- 1 Is $X = \{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{0\}$ and open subset of \mathbb{R} ? is it close? is it compact? (give an appropriate argument). (2 points.)
- 2 Let f and g be two functions from \mathbb{R}^2 to \mathbb{R} .
 - (i) Suppose that f and g are continuous at (0,0). Prove that f+g is also continuous at (0,0).
 - (ii) Suppose f and g are differentiable at (0,0). Prove that f+g is also differentiable at (0,0).

(2 points)

- 3 Consider $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ given by $f(x,y) = \frac{yx^2}{x^2+y^2}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0.
 - (i) Prove that f is continuous at (0,0).
 - (ii) Compute $D_u f(0,0)$ for all $u \in \mathbb{R}^2$.
 - (iii) Is f differentiable at (0,0)?. (give an appropriate argument.)

(2 points)

- 4 Prove using only the definition of integrability that $f:[0,1]\times[0,1]\longrightarrow\mathbb{R}$ given by f(x,y)=xy is integrable. (2 points)
- 5 Consider $D=\{(x,y,z)\in\mathbb{R}^3\mid \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq 1\}$ with a,b,c>0. Compute the volume of D. (1 point)